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Abstract 

This paper presents a graph-based backtrack- 
ing algorithm designed to support constraint- 
based planning in data production domains. 
This algorithm performs backtracking at two 
nested levels: the outer- backtracking follow- 
ing the structure of the planning graph to se- 
lect planner subgoals and actions to  achieve 
them and the inner-backtracking inside a sub- 
problem associated with a selected action to 
find action parameter values. We show this al- 
gorithm works well in a planner applied t o  au- 
tomating data production in an ecological fore- 
casting system. We also discuss how the idea of 
multi-level backtracking may improve efficiency 
of solving semi-structured constraint problems. 

1 Introduction 
Earth-science data processing (ESDP) at NASA is a data 
production problem of transforming low-level observa- 
tions of the Earth system, such as remote sensing data, 
into high-level observations or predictions, such as crop 
failure or high fire risk. Given the large number of so- 
cially and economically important variables that can be 
derived from the data, the complexity of the data pro- 
cessing needed to derive them Ayd the maay teraby+es 
of data that must be processed each day, there are great 
challenges and opportunities in processing the data in a 
timely manner, and a need for more effective automation. 
Our approach to providing this automation is to cast it 
as a planing problem: we represent data-processing op- 
erations as planner actions and desired data products as 
planner goals, and use a planner to generate data-flow 
programs that  produce the requested data products. 

Many of the recent advances In pianning, such as state- 
based heuristic search or reduction to satisfiability prob- 
lems, are not readily adapted to ESDP problems, due 
to  some of its particular features, such as incomplete in- 
formation, large and dynamic universes, complex data 
types, and complex constraints, just to name a few. 

'QSS Group Inc 

We take the approach, like many other researchers 
[van Beek & Chen, 1999; Lopez & Bacchus, 2003; 
Do & Kambhampati, 2001; Smith, Frank, & Jbnsson, 
20001, of translating the planning problem into a con- 
straint satisfaction problem (CSP). However, since data 
processing domains are substantially different from other 
planning domains that have been explored, our ap- 
proach to translating planning problems to CSPs dif- 
fers as well. For example, [Do & Karrbhampati, 20011 
use variables to represent goals and domains to repre- 
sent available planner actions achieving the goals. Con- 
straints are used to encode mutual exclusion relations. 
While this is an effective approach for propositional plan- 
ning problems, we also need variables to represent ob- 
jects and action parameters, and constraints to  rep- 
resent relations among them. Thus, our encoding is 
somewhat more complex, and the CSPs resulting from 
our encoding are hard to solve by the search methods 
employed in other planners [van Beek & Chen, 1999; 
Lopez & Bacchus, 2003; Do & Kambhampati, 2001; 
Smith, Frank, & J6nsson, 20001. 

We have developed a constraint-based planner, called 
DOPPLER, for data processing planner. From a data 
processing task, the planner constructs a Zified p lann ing  
graph, from which it derives a CSP representation of the 
planning problem, and then searches the CSP for a so- 
lution. Whereas a conventional planning graph [Blum & 
Furst, 19971 is a grounded representation, consisting of 
ground actions and propositions, a lifted planning graph 
contains variables. This is not only a much more concise 
representation than an ordinary planning graph, but it 
also is the only practical way that we know to repre- 
sent potentially infinite sets of ground actions. Even 
though the CSP derived from a lifted planning graph is 
difficult to solve by many existing CSP search methods 
such as chronological backtracking (BT), forward check- 

certain structural properties inherited from the planning 
graph. We have developed a search algorithm based the 
structure of the planning graph to improve efficiency of 
solving the CSP. 
In this paper, we report our work on applying 

DOPPLER to automating data production problem. We 
discuss how the data production problem is cast as a 
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planning problem which, in turn, is translated into a 
CSP, and how the planning graph is used to improve 
backtracking in solving the CSP. Section 2 discusses data 
processing as a planning task and our planning approach. 
Seaion 3 describes a graph-based CSP search algorithm 
that outperforms the standard search on problems with 
certain structural properties. Section 4 describes the 
graph-based planning search algorithm that is the main 
contribution of this paper. And Section 5 discusses re- 
lated and future work. 

2 Planning for Data Processing 
Data processing is a task of transforming data products 
into other data products. A common sequence of data 
processing step is: 1) gather data from multiple sources; 
2) convert the data into a common representation; 3) 
combine the data and perform other transformations; 4) 
feed the data into science models and then run the mod- 
els; 5) convert the output of the model into some form 
suitable for visualization; 6) repeat some or all these 
steps depending on the requirements. To formalize data 
processing as a planning problem, we represent data- 
processing operations as planner actions, desired .data 
products as planner goals, and available data sources as 
part of the initial state. 

Planning in DOPPLER is a two-stage process. The 
first sta e consists of a Graphplan-style reachability 
analysisof131urn & f i r s t ,  19971 to derive heuristic distance 
estimates for the second stage, a constraint-based search. 
These stages are not entirely separate, however; con- 
straint propagation occurs in both graph-construction 
and constraint search stages, and the graph is refined 
during the constraint-search phase. 

2.1 Lifted Planning Graphs 
From the planning problem specification, the planner 
incrementally constructs a directed graph, similar to a 
planning graph [Blum & f i r s t ,  19971, but using a lifted 
representation ( L e . ,  containing variables). Arcs in the 
graph are analogous to  causal links [Penberthy & Weld, 
19921. A causal link is triple (CY,, p ,  c y p ) ,  recording the 
decision to use action cy, to support precondition p of 
action cyp. However? instead of an arc to  record a com- 
mitment of support, we use i t  to indicate the possibility 
that, cy, supports p .  The lifted graph contains multiple 
ways of supporting p ;  the choice of the actual supporter 
is left to  constraint search. We add an extra term to 
the arc for bookkeeping purposes - the condition 7;s 

needed in order for as to  achieve p .  A link then becomes 

Given an unsupported precondition p of action  CY^, our 

p .  Because the universe is large and dynamic, iaenti- 
fying all possible ground actions that could support p 
would be impractical, so instead we use a lifted repre- 
sentation, identifying all action schenias that could pro- 
vide support. Given an action schema C Y ,  we determine 
whether it supports p by regressang p through CY,. The 
result of regression is the formula rp*. If rFs =I, then 

(as 7 7 ; s  , P, a,). 
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CY, does not support p .  Initial graph construction ter- 
minates when all preconditions have support or (more 
likely) a potential loop is detected. 

2.2 h o r n  Planning to Constraints 
A constraint satisfaction problem (CSP) representing the 
search space is incrementally built during the planning 
graph construction. The CSP contains: 1) boolean vari- 
ables for all arcs, nodes and conditions; 2 )  variables for 
all parameters, input and output variables and function 
values; 3 )  for every condition in the graph, a constraint 
specifying when that condition holds (for conditions sup- 
ported by arcs, this is just the XOR of the arc variables); 
4) for conjunctive and disjunctive expressions, the con- 
straint is the respective conjunction or disjunction of 
the boolean variables corresponding to appropriate sub- 
expressions; 5) for every arc in the graph, constraints 
specifying the conditions under which the supported flu- 
ents will be achieved (i.e., yp” 3 p ,  where rp” is the 
precondition of a: needed to achieve p )  ; 6) user-specified 
constraints; and 7) constraints representing structured 
objects. 

2.3 Planning Search 
Guided by heuristic distance estimates extracted from 
the planning graph, the planner first selects planner sub- 
goals to  achieve and actions to  achieve them, which form 
a lifted plan. After the subgoal and action selection, 
the the CSP solver finds values for variables representing 
planner action parameters. This is necessary to make ac- 
tions executable. During the search, propagation is per- 
formed whenever a value is assigned to a variable. The 
search is an iterative process involving possible back- 
tracks; that is, if there are no valid parameters for a cho- 
sen action, the planner has to search for another plan; if 
it is impossible to extract a plan from the current plan- 
ning graph, the planning graph has to  be extended, or 
the planner admits the failure of finding a plan. 

2.4 A Simplified Example 
.A typical data processing task consists of gathering data 
files, transforming them, feeding them into a science 
model (e.g., a fire-risk model), and producing a find data 
file so that a decision maker can assess the fire risk of a 
particular region. For simplicity, we ignore much of the 
complexity of the data processing domain, and focus on 
one sub-problem: spatial aggregation. So a simplified 
task becomes to  take some regions from thousands of 
available regions and compose them to create a mosaic 
that covers a specified region. 

Specifically, a region is a pair of points (d, IT) where 
ui is the upper-ieft corner and ir the lower-right corner. 
A point is a pair of coordinates (z, y). Normally z and y 
would be longitude and latitude, but as’ a further simpli- 
fication, we will assume both x and y are non-negative 
integers. Further, we assume there are only 3 actions 
the planner may take, compose two regions horizontally 
( c o m p 2 h )  and vertically ( c o ~ n p & v ) ,  and compose 4 re- 
gions ( c o m p d )  as in Figure 1. 



Figure 1: The planner actions 

Figure 2: A compact search space: objects in a dot- 
ted rectangles are inputs to an action; an object divided 
by dashed lines is a composed object; single objects are 
amilable in the initial state. 

A problem instance we consider here consists of some 
unit squares; that is, squares of (ul, IT) where u1.x + 1 = 
I T . X  and uZ.ij+ 1 = ~ T . Y .  For exLxple, ((G,!l),(1,2), or 
(2,3), (3,4)). The goal is to compose a region covering 

The planning graph created by the planner is in 
Figure 2. At a high level, the planner finds a lifted plan 
by selecting subgoals and actions, shown in Figure 2 as a 
path from the initial state to the goal with dark arrows. 
This plan may not be executable because actions are not 
grounded. For example, the action comp.4 is selected 
because it has support from the initiai state and ic 
supports the action compZh, but its parameters are not 
determined yet. The constraint solver then finds values 
for action parameters, which is shown in Figure 2 as 
groups of shaded rectangles. 

( (0 ,  o>, (3,2)). 

It turns out that finding a lifted plan is a relatively 
easy task because it is a problem of finding a consistent 

assignment to a small number of variables in a very big 
constraint problem; whereas finding values for action pa- 
rameters is a difficult CSP search problem. To address 
the issue, we developed a graph-based search algorithm, 
which is discussed in the rest of the paper. 

3 Graph-Based Backtracking 
A constraint satisfaction problem (CSP) consists of vari- 
ables, domains that contain possible values the variables 
may take, and constraints that limit the values the vari- 
able can take simultaneously. In finite-domain CSPs 
(that is, every variable has a finite domain), a constraint 
over a variable subset can be represented extensionally 
as a subset of the Cartesian product of the domains of 
variables in the constraint. However, in the data pro- 
cessing domain we are interested in, the CSPs obtained 
from the planning problem contain variables that usually 
have infinite domains [Golden & Frank, 20021. An infi- 
nite domain is represented as an an interval (for numeric 
types), regular expression (for string types) [Golden & 
Pang, 20031, or symbolic set (for object types). Because 
of infinite domains, the constraints are not represented 
extensionally as relations, but as procedures [Jbnsson, 
19961. A procedural constraint consists of a set of vari- 
ables (the scope) and a procedure (i.e., an execute0 
method) that can be executed to enforce the constraint 
by eliminating inconsistent values from the domains of 
variables in the scope. If execution of a constraint results 
in an empty variable domain, execute0 returns failure, 
indicating the violation of the constraint. 

How- 
ever, many practical problems possess certain proper- 
ties that allow tractable solutions. A class of structure- 
based CSP-solving algorithms, called decomposition al- 
gorithms, has been developed [Gottlob, 2000; Gyssens, 
Jeavons, & Cohen, 1994; Dechter, 1990; Dechter & Pearl, 
19891. Decomposition algorithms attempt to find solu- 
tions by decomposing a CSP into several simply con- 
nected sils-CSPs based oii the under!ying censtr~int  
graph and then solving them separately. Once a CSP 
is decomposed into a set of sub-CSPs, all solutions for 
each sub-CSP aze found. Then a new CSP is formed 
where the original variable set in each sub-CSP is taken 
as a singleton variable. Usually the technique aims at 
decomposing a CSP into sub-CSPs such that the num- 
ber of variables in the largest sub-CSP is minimal and 
the newly formed CSP has a tree-structured constraint 
graph. In this way, the time and space complexity of 
finding ail soiutions for each sub-CSP is bouxded, and 
the newly formed CSP has backtrack-free solutions. The 
complexity of a decomposition algorithm is exponential 
in the size of the largest SU'U-CST. Tlie class sf CSPs ih& 
can be decomposed into sub-CSPs such that their sizes 
are bounded by a fixed number IC is tractable and can be 
solved by decomposition in polynomial time. This is the 
strength of CSP decomposition. A fatal weakness of CSP 
decomposition, however, is that the decomposition is not 
applicable to solving a CSP that is not decomposable, 
that is, its decomposition is itself. A secondary draw- 

Solving a CSP, in general, is NP-complete. 



back of CSP decomposition is that, even if the CSP is 
decomposable, finding all solutions for all the sub-CSPs 
is unnecessary and inefficient. 

Graph based backtracking (GBT) [Pang A'L Goodwin, 
20031 was developed t o  address these issues. The idea of 
the GBT algorithm is to decompose the constraint graph 
into a tree of subgraphs (for example, non-separable corn- 
ponents ) ,  and then search for a consistent assignment 
to variables involved in a subgraph and extend it to its 
children. At a subgraph where no consistent assignment 
can be found, GBT backtracks to the parent, reinstan- 
tiates variables in that subgraph, and starts from there. 
Within a subgraph, GBT searches for a consistent as- 
signment to the variables in the subgraph in a way sim- 
ilar to standard backtracking, which may involve back- 
tracks but limited to within the subgraph. The algo- 
rithm stops when a solution is found or when it proves 
that no solution exists. The detailed GBT algorithm 4.1 Algorithms 
can be found in [Pang & Goodwin, 20031. h a simple 

optimizing the constraint problem in terms of its size 
and structural properties. 

As an alternative, we decompose the CSP into sub- 
CsPs based on the planning graph instead of the con- 
straint graph, each sub-CSP containing a group of vari- 
ables that are relevant to a node in the planning graph 
representing a lifted action. In most of the cases, the 
sub-CSPs may not form a tree, which makes the tradi- 
tional csp decomposition methods inapplicable. How- 
ever, the GBT algorithm can be adapted easily: the 
outer-backtrackirig is performed to select the planner 
subgods and actions, the inner-backtracking to find val- 
ues for action parameters by solving the associated sub- 
CSP. Even though the sub-CSPs do not form a tree, it is 
not a requirement for the graph based search approach 
but a preferred property. 

way, the GBT algorithm performs backtracking at  two 
nested levels: the inner-backtracking inside a subgraph 
and outer-backtracking following the subgraph tree ob- 

The graPh-based Planning search algorithm Outlined 
in 1 and 2. At a high level, the planner per- 
forms Best-FirSt 'earch to 'elect the Planner subgoals 

tained from the graph decomposition. 
The GBT algorithm shares the merits of csp decem- 

position and OvercOmeS it. webesses. As &h the de- 
composition method, GBT decomposes the given csp 
into sub-CSPs based on the underlying constraint graph 
 decomposition^ Unlike the decomposition how- 
ever, GBT only tries to find one solution for a chosen 
 sub-^^^, which is not separated from other sub-CSPs, 
and then tries to extend it to other sub-CSPs, If ,.he un- 

plexity of GBT algorithm is bounded by the size of the 
largest sub-CSP; in the that the constraint graph 
is not decomposable, GBT degenerates to a standard 
backtracking. 

The GBT algorithm, as with other decompos~t~on al- 

and actions achieving the subgoals. Once an action is 
chosen for a subgoal, it collects a subset of variables rel- 
evant to  the action and calls a constraint solver SBT to 
find a consistent assignment for the collected variables. 
SBT performs a local backtracking to search for a so- 
lution to the sub-problem that is also consistent with 
solutions to the sub-problems preceding the current one. 
If SBT fails, the high-level search takes control, tries 
another action for the current selected subgoal or back- 

selection of subgoals and actions, SBT is called again 
to find values for certain variables that may have been 
missed during the previous search. 

Both algorithms interleave search with propagation, 
which is a process of continuously executing constraints 

derlying constraint graph can be decomposed, the corn- tracks to a previously subgoal. At the Of 

gorithms, depends on the underlying constraint graph 
representation and its decomposition. For details on 

as long as variable domains change. The propagation 
performs a partial generalized arc-consistency (GAC)l 

graph representation and decomposition see [Gottlob, 
2oool. F~~ the planning problem at hand, we adapt GBT 
to utilize the planning graph structure for search heuris- 
tics. 

4 Graph-Based Planning Search 
Intuitively, the CSP derived from the planning graph is 
well structured due to the fact: i) the variables relevant 
to  each planner action along with the subgoal it sup- 
ports and the conditions enabling the action are tightly 
connected; ii) the constraints between variables of dif- 
ferent actions are relatively sparse. Ideally, the CSP can 
be decomposed based on the constraint graph decom- 
position into sub-CSPs, each corresponding to a group 
of variables associated with a planner action. However, 
by experiments with a few graph decomposition meth- 
ods, we haven't been able to decompose the constraint 
graph into a tree of subgraphs in a satisfactory way. It 
is still an on-going research effort to evaluate the process 
of translating the planning problem to a CSP aiming at 

[Bessie= 8~ Ch, 1997; Katsirelos & Bacchus, 20011, and 
it is an essential part of solving the constraint problem, 
not only because i t  reduces the search space by eliminat- 
ing some inconsistent values, but also because the con- 
straint problem at  hand contains variables with infinite 
domains which cannot be enumerated by search. If exe- 
cuting a constraint fails, propagate 0 returns failure, 
which implies that the current value assignment to vari- 
ables is inconsistent. Because the propagation is not lim- 
ited to a sub-problem even if i t  is invoked by the SBT 
solving the sub-problem, i t  ensures the solutions to local 
sub-problems are globally consistent. 

Comparing to  the GBT algorithm in Section 3, the 
high-level BFS corresponds to  the outer-backtracking; 
it backtracks when the selected best subgoal or action 
achieving a subgoal based on the planning heuristics is 
not feasible; that is, either the immediate propagation 

'kve call it partial GAC for two reasons: 1) not every con- 
straint procedure enforces the GAC; and 2) not every con- 
straint is executed in the propagation. 



fails, or the subsequent SBT search fails. The lower- 
level SBT is standard backtracking plus propagation for 
solving a specified sub-problem. Whereas the GBT al- 
gorithm and other graph-based decomposition methods 
require that the CSPs to be solved can be decomposed 
into tree-structured sub-problems, the multi-level back- 
tracking algorithm presented here follows the structures 
of variable clusters, which may or may not form a tree, 
without an explicit decomposition. Such a multi-level 
backtracking strategy is particularly well-suited for semi- 
structured problems; though, more empirical studies are 
needed. 

Algorithm 1 GBFS 
Given a set of subgoals in the lifted planning graph G 
and a family of action sets A = { A ( g ) l g  E G}, each A(g) 
is a set of actions achieving subgoal g. Let G’ G be a 
set of active subgoals to be achieved (initially, the goals 
in the goal state), P = ( X ,  D ,  C) the CSP derived from 
the lifted planning graph, and X’ a subset of searchable 
variables: 

GBFS(G, A ,  P, G’) 
1. while (G’ # 0) do 

(a) g t a goal removed from G‘ 
(b) for each action a E A(g)  

i. if (propagate(P, {a}) returns failure) 
continue for the next action 

ii. X’ t variables relevant to u 
iii. while (SBT(P,X’) returns success) do 
A. G, t conditions of a 
B. add G, to G’ and sort G‘ 
C. if (GBFS(G, A, P, G’) returns success) 

return SBT(P, X) 
iv. continue f o r  the next action 

(c) return failure 
2. return success 

Algorithm 2 SBT 

searchable variables: 

SBT(P, X‘) 

, Given a CSP P = (X. D ,  C), and let X’ C X be a set of 

1. if (X’ = 0) return success 
2. select 5% E X  
3. for each value v E d(xl) 

(a) zt t- v 
(b) if (propagate ( P ,  Cx,I> returns success) 

i. update X‘ 
ii. if (sBT(P, X’j returns success) 

return success 
4. return failure 

4.2 The Example Again 

We take a look at the simplified example again and de- 
scribe how the graph-based search algorithm works. 

The task is to make a region covering ( ( O , O ) ,  (3 ,2 ) ) ,  
which consists of regions B1, Bz, ..., Bs, all available from 
the initial state. At the beginning of the planning 
search, the active goal set G’ contains only the top- 
level goal of making ( (0 ,  0), ( 3 , 2 ) ) .  Ignoring the search 
heuristics, we assume tha t  the planner chooses the action 
compth, which composes two regions horizontally. These 
two regions are the parameters of the action, which are 
not determined initially. The inner-backtracking solver 
SBT is created with these parameters and it is called 
to  find values for them. It quickly finds two regions, 
( ( O , O ) ,  ( 2 , 2 ) )  and ( ( 2 , 0 ) ,  (3, a ) ) ,  for output parameters 
of action compth, and it also remembers its current sta- 
tus so that when it  backtracks, it can find the next so- 
lution (the regions ((0,0),(1,2)) and ((1,0), (3 ,2 ) ) ,  see 
Figure 2) . The planner adds two subgoals, constructing 
the regions ( ( O , O ) ,  (2 ,2 ) )  and ((2,0), ( 3 , 2 ) ) ,  to the active 
goals, and then continues recursively with the next best 
goal, which is one of the newly added two subgoals. 

4.3 TOPS Application 

M7e have applied the OoPPLEE planner to the Ter- 
restrial Observation and Prediction System (TOPS, 
http://ecocast.arc.nasa.gov) [Nemani et  al., 20021, an 
ecological forecasting system that assimilates data from 
Earth-orbiting satellites and ground weather stations to 
model and forecast conditions on the surface, such as soil 
moisture, vegetation growth and plant stress. The plan- 
ner identifies the appropriate input files and sequences 
of operations needed to satisfy a data request, executes 
those operations on a remote TOPS server, and displays 
the results, quickly and reliably. 

We have developed A TOPS planning domain, which 
specifies the data operations and data object types 
in TGPS. Daca operar;ions include I uririirlg siliidation- 
based models, reprojection, scaling, and construction of 
color composites, mosaics, and animations, etc. For ob- 
ject types in TOPS, Figure 3 shows the input and output 
objects to  a TOPS model. To create a planning problem 
instance (i.e., a TOPS task), the user needs only to spec- 
ify the planner goal, which is a description of a desired 
data product. A sample TOPS task would be something 
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Figure 3: Structured inputs and outputs to a TOPS 
model 

like “display Gross Primary Production (GPP) for con- 
tinental US on May 5th, 2004”. 

The motivation of developing the graph based plan- 
ning search is to speed up the search process so that the 
planner can produce the requested data product within 
a time limit acceptable to the user. Even though it is dif- 
ficult for us to compare DOPPLER planner with publicly 
available planners, which cannot handle data-processing 
problem, we have compared DOPPLER to itself by turn- 
ing on or off the inner-backtracking SBT. Without inner- 
backtracking SBT, for most of the TOPS tasks, it usu- 
ally takes a few tries with different variable ordering 
hwrist>ics to solve a problem; sometimes it fails within 
a specified time limit (e.g., 5 minutes). With inner- 
backtracking SBT turned on, the same TOPS tasks can 
be solved quickly without trying the additional variable 
ordering heuristics. However, we are currently conduct- 
ing experiments on more TOPS tasks and artificial prob- 
lems like the one in Section 2.4. 

5 Conclusions 
We have discussed the data production problem and how 
we reduce it to planning and solve the planning problem 
with a constraint search and propagation approach. A 
key element of our approach is the lifted planning graph, 
which we use as a basis for our CSP encoding, and use 
further to guide the planning and constraint search. The 
graph-based backtracking algorithm presented here has 
proved to be effective in our planner; it is also a gen- 
eral CSP solver that we intend to evaluate further on 
structured or semi-structured problems and to  compare 
to other search and decomposition methods. 

There has been little work in planner-based automa- 
tion of data production. ‘lwo notable exceptions are 
Collage [Lansky, 19981 and MVP [Chien et al., 19971. 
Both of these planners were designed to  provide assis- 
tance with data analysis tasks, in which a human was in 
the loop, directing the planner. In contrast, our planner 
does not require human interaction, which is appropriate 
for domains like TOPS, in which data production must 
be entirely automated; there is simply too much data 

- 

for human interaction to be practical. Pegasus [Blythe 
et al., 20031 is a workflow planning system for compu- 
tation grids, a problem similar to ours, though their fo- 
cus is on mapping pre-specified workflows onto a specific 
grid environment, whereas our focus is on generating the 
workflows. 
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